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ABSTRACT

In this paper we EfszﬁLBEgleeted issues of simultaneous statis-
tical inference and statisfical power in survey research applications of
the general linear model, and we find that classical hypothesis testing
as it is currently applied, is inadequate for the purposes of social
research. The intelligent use of statistical inference demands control
over the overall level of Type I error and knowledge of the magnitude
of effects one is likely to detect. We suggest techniques that can be
used to routinely incarporate considerations of simultaneous inference
and power into the statistical analysis of survey data. Several examples

of applications of these techniques are presented.




I. Introduction

Our purpose in this paper is to provide for a more informed use
of statistical inference in tests of hypotheses in survey applications
of the general linear model (CIM). This model, like any model, is cam--
prised of a set of assumptions thaf permit the derivation of certain
general principles. The assumptions of the GIM are of particular utility
to the survey researcher in that they permit one to draw inferences
about the structure of relationships among variables to larger popula-
tions on the basis of sample survey data. In this paper we suggest
that whén conducting multiple statistical fesfs of hypotheses within
the GIM framework, our results will be more meaningful if we know the
overall probability of réjectinéja false null hypothesis and the prob-
ability of finding statistically significant results when substantively
meaningful effects exist,

By following the current practice for doing multiple tests for
hypotheses on parameters of linear models! researchers are inadequately
controlling the probability of rejecting a true null hypothesis-—the
probability of making a Type I error. Inference considerations in
situations where multiple tests vf hypotheses are conducted are qualita-
tively different from procedures described for single hypothesis testing
- in most texts. Proce&ures currently employed yield Type I error rates
that can be considerably lower than the true probability of rejecting
a true null hypothesis when a number of hypotheses are tested. Scientific
norms of parsimony that dictate researchers be conservative in their claims

of the empirical effects of social variables are clearly violated as
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gsocial researchg;s-systematically underestimate the likelihood that
Type I errors are occurring in their analyses. Drawing on a considerable
body of literature on simultaneous inference in the GLM, we argue that
analysts of survey data must reconceptualize their approach to statisti-
cal inference. We discuss gseveral techniques for treating the gimulta-
neous inference problem in the GIM, and present, with examples, procedures
for applying these techniques to survey data.

In currentxresearch practice little concern has been expressed for
the power of GLM statistical tests. Analysts of large sample survey data
often dismiss power considerations with the assertion that their tests
have "more than enough power'--even trivial effects yield statistically
significant results (Blau and Duncan, 1967, pp. 17-18). We present ex-
amples below to demonstrate that for many GLM hypotheses, whether or not
the tests are characterized by "nore than enough power" can be quite
pggk}ematic."indeed, most researchers are confronted with a situation
where they must takelas given two important determinants of the power of
statistical tests, sample size and the coifiguration of independent vari-
ables.1 Thus, we argue that it is imperative that the aﬁalyst compute
the magnitudes of the effects that are likely to be detectable in a given
gset of data. As we shall demonstrate below, the power of GLM tests can
be routinely calculated. | |

The importance of the consideration of issues in simultaneous
statistical inference and power for the informed use of statistical
tests of hypotheses requires that the survey researcher be aware of

major issues and procedures pertaining to these two areas. In this paper,
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wé provide a critical examination of issues and procedures in simul-
taneous statistical inference and statistical power as they apply to
‘the research. We begin our exegesis with a brief review of assump-
tions of the GIM and common hypothesis tests in survey research applica-
tions. Drawing on the body of literature on simultaneous inference in
the GIM, we argue that analysts of survey data must reconceptualize their
approach to statistical inference. We discuss several techniques for
~treating the simultaneoﬁs inference problem in the GLM, and present,
with examples, procedures for applying these techniques to survey data.
Following the treatment of simultaneous inference wé examine factors
that influence the ability to detect substantively meaningful effects——
statistical power. A procedure for estimating the power of statistical
tests is discussed and illustrative examples of the influence of various
factors on statistical power are presented. We conclude with some sug-
gestions for improving the use of statistical inference in making meaning-

ful decisions about the merits of the hypotheses being tested.

II. The General Linear Model: Assumptions and

Common Hypothesis Tests

A. GIM Assumptions

We shall concern ourselves with tests of hypotheses about the param=

eters of the GIM, the classical model stated in matriX terms as follows:

y X 8 €
1) D T 0 &) oD ’




) E(g) =0
(3) E (e") = 0L
(4) €~ N (0, 0°I)

(5) X is fixed (nonstochastic) and of full column rank.2

While the theory of statistical inference for the GLM was originally
developed for the above model, assumption (5), fixed X, is clearly unten-
able in the application of the model to survey data. It requires that
the sampling desigr include a priori stratification on all independent
fwvariabiéé;li.e. a r dori specification of cell sizes for each combina-
tion of the levels of the independent variables. A modification of the
above model allﬁﬁs for the typical survey design of multivariate sampling
from the joint distribution<pf y and X. We replace (2) through (5)
above with the following agsumptions:

(2a) E (€|X) = 0

2

(a) E (ee'|®) = oL

(48) E_Il(_ ~ N(Q_,Uzl)o

Thus it is required that the classical assumption holds conditionally on

X. The disturbance must be mean independent of the independent variahles3

and be conditionally independently normally distributed with zero mean

and constant variance. While this more appropriate conditional GLM
presents no differences in the treatment of Type I error, it does com-
plicaté the treatment of power. While our results with respect to Type I
error hold unconditionally, the procedures for power calculations present-
ed in this paper give résulps conditional upon the values of X realized in

a particular sample (Graybill, 1961, pp. 204-205; Sampson, 1974). The

8
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conditional power calculations presented herein must be considered upper

bounds upon the unconditional power of the tests.
L] . .

-

B. Hypothesis Testing in Survey Applications of the GIM

In Table 1 w: present 1n outline of the types of GIM hypothesés
commonly tested in survey applications and the statistical tests applied
to those hypotheses. Tn (1) we have the test of an individual coefficient,
Bi' The t-test is just b, = B; divided by the standard error of b,s the
usual t-ratio computed in regression programs. The one degree of freedom
F-test is merely the square of the t-test.

Hypothesis (2) is the test that a subset‘of J coefficients are joint-
ly equal to a set of J specified values. When Q;Z) is specifiedjto be a
vector of zeros and J = K = 1, it is the common "overall" F-test of no
regression., When J < K ~'1, and 9;2) is a vector of zeros, it is the
"increﬁent to R2" F-test for a subset of variables.

Hypothesés (1) and (2) coﬁprise the majority of hypothesés tested
in surveyAapplications of the GIM. Although seldom conducted in non-
experimental applications of the GLM, a researcher may want to test
whether linear combinations of the coefficients are equal to some specified
zero or nonzero values, Paralleling hypotheses (1) and (2), one can test
a single linear combinaﬁion with a t—test5 or one degree of freedom F-test,
or jointly test J linearly independent linear conbinations of_coefficients.
Indeed, hypotheses (1) and (2) are special cases of (3) and (4).

Fiﬁilly, each of the F-tests for the hypotheses can be considered
"increment to Rz" tests with J numerator and N - K denominator degrees

of freedom as given in the equation for the u statistic found in Tabhle 1.

-
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ITI. Simultaneous Statistical Inference

In most appiications of the GIM in survey research more than one of
a single type of the above delineated hypotheses is tested or more than
one type of hypott.sis is tnsted, Frequently some set of interaction
effects are tested jointly and main effects are tested individually.

When the cffects of a categorical and one or more continuous independent
variables are analyzed, often a joint test of the effects of the set of
dumy variables representing the categorical variable and one or more in-
dividual tests of the coefficients for the continuous variables are perform-
ed. In applications of the GLM that involve a single equation, the per-
formance of multiple t-tests on {ndividual slope coefficients is a uni-
versal practice. Finally, it 1is becoming standard practice to do multiple
tests on all possible slope coefficients in simple recursive structural
equation models.

We have briefly noted above the researcher who pérforms such multiple
hypotheses tests -is in a quali:gtivg}y different inference situation--that
of simultaneous statistical inference—-than the researcher who performs
only a single hypothesis test. In this section we shall consider both
how the single and multiple hypotheses cases differ from the standpoint
of inference, and techniques of statistical inference that are appropriate
to the mulitple hypotheses test gituation, First we shall examine these
two issues in general and then we shall consider them as they apply to

the standard tests conducted wifhin survey research applications of the GLM,

11




A. Qgﬁeral Issues in Simultaneous Statistical Inference

An understanding of tﬁe basic difference between the single hypothesis
and multiple hypotheses cases can best be achieved by first recalling the
definition of Type I error in statistical inference. Type I error 1s
the error of falsely rejecting a true null hypothesis, For the researcher
who performs only a single null hypothesis test, this definition presents
no problem. The probability that he will falascly teject this single null
hypothesis is the probability of Type I error in this case. The research=
er can straightforwardly proceed by following the suggested standard pro-
cedure of specifying a level, 1 - a, of protection against a Type I error,
and then proceed to perform his statistical test accordingly. Now consid-
er what happens if this same researcher sometime in his life performs
additional tests of null hypotheses according to the suggested standard
procedure, That is, he 9Pe¢1§19§m5hlﬁvgl”l”:”QWQfWﬂGSired protection

against a Type I error and conducts each of his statistical tests at

this level.

If we reflect now on the definition of Type I error we realize that
for this researcher the actual level of protection against making a Type
I error in the multiple null hypotheses case is less than 1 - o, Thus,
this researcher is overestimating the protection he has against falsely
rejecting a true null hypothesis; The problem with e@ploying the conven-
tional procedure for making tests of multiple null gypotheses arises be-
cause theﬂprobability of making a Type I error in this case is the prob-
ability of falsely rejecting any oﬂe of the individual null hypotheses--
which equals the probability of making a T&pé‘I error for the first null

hypothesis, or for the second null hypothesis, or for the nth null

12




9
hypothesis, or for any combination of the n hypotheses. Except in the
cagse of total dependency among the null hypotheses tested, this prob-
ability is grester than the o level under which each of the null hypoth-
egses were tested.

Essentially the solution to this problem is provided by the research-
er's decision concerning which null hypotheses will be grouped together
for the purpose of consgidering Type I'error--generaily referred to as the
specification of the unit of error rate., Given this decision, the research-
er can proceed to do each of tke tests of individual null hypotheses in
such a fashion that the desired level of protection against making a Type
I error for the group of null hypotheses has been provided.

Two extreme groupings of null hypotheses can be identified. First,
one could consider as a group all the‘null hypotheses tests that a
researcher or a group of researchers will do in his or their lifetime.

By grouping in this manner the researcher would be providéd with pro-
tection at a specified level against ever falsely rejecting a true null
hypothesis. Second, one could consider each individual null hypothesis
test as a group for inference purposes. This grouping is generally called
a per-comparison unit of error rate and effectively removes one from the
gimultaneous inference situation. The first extreme grouping essentially
has been rejected in discussions of appropriate units of error rate for
research, and a general agreement exists that the upr'r bound for grouping
purposes is provided by the group of null hypotheses tested by one research-
er in one studv. However, there exists no consensus on what 1is the most

. appropriate unit of error rate below this upper bound (Ryan, 1959, 1962;

Wilson, 1962; Milley, 1966).

13
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The problem addressed by simultaneous statistical inference tech-
niques is that of how to perform tests of individual hypotheses such
that one has protectioh at a specified level against making a Type I
error for a group of hypotheses. Numerous techniques of simultaneoﬁs
statistiéal inference have been designed to address this problem (Miller,
1966; Kirk, 1968), many of which have been developed for specific types
of tests within the GLM framework.6 However, two techniques, the
Bonferroni and_Scheffé, are of wide generality.

The Bonferroni technique 1s based on the Bonferroni inequality,

which states that

N
(6) o, < I 0g 3
€~ 4m1 51

where Qe equals the significance level for a group of null hypotheses,

Qg equals the significance level for each individual null hypothesis
i

in the group, and N equals the total number of null hypotheses in the group.
The Bonferroni technique can be applied to virtually all situations of
multinle hvpotheses tests where one has prior knowledge of how many tests
are to be conducted.

The Scheffé method, in the GLM framework, provides a means of con-
trolling error rate for tests of all possible 1inear combinations of
the .least squares estimates of the sloﬁe coefficients. The Scheffé tech-
nique is based on the common assumptions (distributional and otherwise)
of the GIM, Its generality is due to the fact that it allows the research-
er to perform an infinite number of tests of linear combinations of 8
coefficients while protecting against a specified value of Type I error

for the group.

14
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B. Simultaneous Statistical Inference in GLM Appnlications in Survey Research

The first question that must he addressed 1is, "Noes one need to be
concerned with issues of simultaneous irference?" The implicit answer
given to this question in survey research applications of the CGIM to
date has been, "no." Virtuallv all analvses of survey data conducted
within the GIM framework have implicitly employed a per-comparison error
rate. In general, analyses of multiple null hypotheses based on survey
data have been performed in the following manner: A value of Type I
error is specified and this value is used 1in tests of each individual
null hypothesis, No consideratioﬁ is given to error rate for any group
of hypotheses.

There are compelling reasons for believing that this implicit an-
swer 1s insufficient., The first reason 1is that the implicit answer 1is
usually based on a lack of knowledge of the issues in simultaneous infer-
ence. Basic textbook treatments of statistical inference, from which
most social researchers' knowledge of this subject is obtained, generally
ignore simultaneous statistical inference. Consequently, many social
researchers are unaware or vaguely aware that a problem may exist in
doing multiple tests of null hypotheses.

Beyond this lack of knowledge there are important substantive reasons
for considering simultaneous inference. Perhaps the most 1mportant of
these 1s the fact that social researchers do not limit their concern to
the determination of whether or not a single variahble has a statistically

significant direct effect on a given dependent variable, but extend

their interest to the determination of whether or not a set of independent

-~
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variables affects a given dependent variable. Such analyses are fre-
quently done i n the context of a causal model of a process that deter-
mines variation in a dependent variable. This is particularly the case
in analyses done within the recursive structural equation framework.
Here the researcher frequently begins with a specified causal ordering
among a set of variables and a set of null hypotheses about the rela-
tionships among this set of variables. It can be aégﬁed that since
the researcher is interested in finding the correct model of a process
in a population, the set of ‘multiple null hypotheses used to £find this
model should be tested simultaneously. That is, the researcher “should
provide protection against a specified level, Oes of finding an incorrect .
model of a process; since falsely rejecting any of the multiple null
hypotheses is in effect finding an incorrect model of the process.

Another reason for being concerned with units of error rate other
thaﬁ the per-comparison unit is the scientific dictum of conservatism
and parsimony. It is generally thought that the acceptance of a falée
null hypothesis is more desirable scientifically thanithe rejection of
a true null hypothesis. Such a principle, it is pronposed, keeps the
scientific literature from becoming unduly confused by false research
findings and keeps scientific theories from becoming overly complex.
Since the emplovment of a unit for error rate other than the per=
comparison unit makes it more difficult to capitalize on chance in con-
ducting tests of multiple null hypotheses, the scientific dictums of con-

gervatism and parsimony argue for the use of simultaneous inference tech-

niques.

16
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A final reason is specific to the practice of "data snooping" or
"data dredging.'' Both terms ;re used in reference to the practice of
doing some previously unspecified number of tests within a body of
data in an attempt to disco#ér relationships among the set of variables
analyzed. Such a practice is undertaken either hecause the researcher
has no prior hypotheses about the relationships among a set of variables
or wishes to supplement an analysis of prior hypotheses. In this situa-
tion it is argued that since one approaches an analysis with an unspec-
ified number of null hypotheses to be tested--the number tested could
be one, several, df all possible tests--the scientifically honest pro-
cedure is to use a simultaneous inference technique that provides pro-
tection against a level of Type I error for all possible tests.

Given thét one has concluded that it is desirable to employ simul-
taneous statistical inference techniques, the next question that must
be addressed is "What unit of error rate should be employed?" The most
straightforward answer that can be given to this question is simply that
there are no hard and .-fast rules. The unit of error rate used ié depen-
dent upon the researcher's judgement of what unit best suits the research
proposes. We can make suggestions, however, about what seems to be
appropriate units for certain applications of the common hypotheses tests
delineated in Table 1. We will consider three such applications: '(1)
the prediction situation, (2) the use of "theory trimming" in simple
recursive structural equation models, and (3) the use of various hypothesis

tests in post hoc analyses of linear models.

17
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Consider first the situation in which the researcher is simply
interested in determining which variables among a set of independent
variables have significant, direct effects on a dependent variable.
The intent here is usually that of discovering what variables are im-
portant determinants of variation in some dependent variable.. The '
usual procedure in this caée is the performance of an individual tgstv
of the hypothesis that-Bi equals zero‘for each independent variable.?
We suggest that all of the individual hypothesis tests of the B's be
grouped together for purposes of consi&ering error rate. Such a group—
ing seems appropriate since the focus of this type of research is on
the correct prediction of values of a given dependent variable. By
grouping in this fasﬁion, the researcher is protected at the level

G

dependent variable.

1 - o, against making a Type I error in predicting values of a given

Secondly, consider the "theory trimming" strategy (Heise, 1969)

often employed in the analysis of simple recursive structural equation

models. A common procedure in social research is the specification of

a recursive causal ordering among a set of variables and the employment
of multiple t-tests of individual B coefficients (or their standardized
counterparts) to determine which effects among those possible in a recur-
sive causal ordering are significant.7 The intent here is usually that

of determining the most plausible model of some process in a population.
We propose that all of the null hypotheses tested in the "theory trimming"
process be considered as a group for error rate purposes. Because in

Ehis case, the researcher 1is interested in finding the correct model of

18
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a process in a population, grouping in this fashion is appropriate.
Since falsely rejecting any éne of the null hypotheses about the indi-
vidual B coefficients means that the researcher has found an incorrect
model of the process, protection should be provided against falsely re-
jecting any one of the null hypotheses. By treating all of the null .
hypotheses as a unit for purposes of considering Type I error the re-
gearcher does so at the level 1 -~ Og o

Finally, consider the use of the common hypotheses tests in the
post hoc case. Frequently the results of one's analysis do not confprm
to the original expectations. The attainment of unexpected results may
at least partially be attributed to initial assumptions not holding.

For example, one may have assumed that the relationships among a set of
variables are linear and additive when in fact they are nonlinear or not
additive. Many of these assumptions are testable with the data at hand
and in such a situation the researcher may wish to perform a number of
hypothesis tests to determine 1f the unexpected results are attributable
to the faflure of meeting one's assumptions.

Additionally, the results of one's analysis may suggest further
tests that may be interesting to the researcher or the researcher may
simply wish to snoop around in the data in the hope of discovering an
interesting result. In all these post hoc analyses the researcher is
"data dredging.'" For the reasons éf scientific honesty elaborated above
we suggest that the researcher employ as the unit of error rate all

4
possible tests of the B coefficients and employ the Scheffé techniques

19
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After one has determined the unit of error rate to be employed, a
simultaneous inference technique must then be chosen. The Bonferroni and
Scheffé techniques can both be applied to all of the common hypotheses
tests performed on slope coefficients listed in Table 1.8 The two
techniques do differ, however, in the advantages each presents in
specific situations. Two criteria are of importance in weighing the
relative advantages of each technique: (1) the ability the techniques
present to detect specific alternative hypotheses (1.e. statistical
power), and (2) their applicability to a priori versus post hoc statis-
tical tests. We shall first consider the mechanics of applying each
technique and then wéighing their relative advantages in terms of these

two criteria.

C. The Bonferroni Technique

To provide protection at level 1 - GG for a group of null hypotheses
via the Bonferroni technique one first determines the total number of
individual null hypotheses to be tested, m. Then, one divides O by m -
and tests each individual null hypothesis with a significance level
equal to uG/m. For example, if one wishes to test whether a subset of
coefficients are jointly equal to zero and to test whether four addition-
al coefficients are individually equal to zero, with a group probability

error rate of .05.one would simply conduct the tests corresponding to

hypotheses (1) and (2) 1in Table 1, each with Og equal to .0l.
Y4

20
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D, The Scheffé Technique

The Bcheffé technique is applied to the various F-tests specified

in Table 1. It requires that one first perform a test of the joint

null hypothesis that all of the coefficients from which subsequent tests
of the nature of those in Table 1 will be conducted, with 1 - % equal
to the desired level of protection against a Type 1 error. If this test
is nonsignificant one stops here and performs no further tests, since
tests of any linear combination of these B coefficients (this includes
as well hypotheses (1) and (2) in Table 1) will prove nonsignificant.
.If, on the other hand, one can reject this joint null hypothesis, then
one carries out any and all of the tests in Table 1 by using as tﬁe
critical value of the test statistic for all individual null hypotheses

tests, the quantity

6 N-w ,

~ where J equals the degrees of freedom from thg joint null hypothesis

test that all coefficients equal to zero. For example, 1f the researcher
wishes to conduct individual tests of three different linear combinations
of four B coefficients (tests of the form of hypothesis (3) in Table 1)
one would use the specified test in Table 1 with the critical value of

the test statistic equal to

o
GG, yox)
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E. Bonferroni and Scheffé Procedures: Some Comparisons

Note first that the Bonferroni and Scheffé procedures are con-
gservative. In general the actual value of the group error rate will
be less than that desired. Hence, one will have greater pfotection
against a Type I error than initially specified. The Bonferroni pro-
cedure, as we had mentioned, is based on the Bonferroni inequality and
the fact that 1t produces only approximations to the actual group error
rate that can be readily seen. The Scheffé technique provides an exact
value of the group er?or rate for all possible linear combinations.
However, it is only a finite subset of these linear combinations that
{g ever tested, and consequently 1t, like the Bonferroni technique, is
conservative.

The fact that the Scheffé procedure proJﬁdes an error rate for all
possible linear combinations, while the Bonferroni procedure is based on
a finite number of tests provides some insight into the ability of each
to allow the rejection of individual null hypotheses. Intuitively, it
appears that the Scheffé technique will be less powerful than the Bonferroﬁiw-
technique because the former is based on an infinite number of tests
while the latter is not. In fact the Scheffé technique will always be
less powerful for the rejection of individual null hypotheses when m,
the actual number of tests made, is less than or equal to J, the degrees
of freedom for the numerator of the F statistic. On the other hand, when
m ig considerably bigger than J, the inexactitude of the Bonferroni pro-

cedure is such that the Scheffé procedure provides greater power for the
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rejection of individual null hypotheses (Miller, 1966, pp. 62-63;
Dunn, 1959).  Rather than rely on the somevhat sparse literature
comparing the power of simultaneous inference techniques, the re-
searc’;r can apply both the Bonferroni and Scheffé techniques (or
others) and use the one that provides greatest power. Doing so 1is
fully permissible in the a_priori case since the choice of technique
ig independent of the data collected. |

The Scheffé procedure presents an advantage over the Bonferroni
technique in post hoc tests. For reasons of scientific honesty elab~
orated earlier, the Scheffé technique 1is more suitable—;or gearching
one's data in an attempt to discover the nature of the relationships
among a set of variables, -

We turn now to an examination of issues concerning the power of
gtatistical tests of GLM hypotheses. Before doing so, an important im=-
plication of the congervative nature of the Bonferroni and Scheffé pro-
cedures for the estimation of ;ﬁé power of GLM hypothesis tests must be
noted. As we shall discuss below, the smaller the o 1gve1 for a hypo-
thesis test, the less power of that test (holding other factors constanf?.
As a consequence, the ease of applicability of the two pfocedures is
purchased at the cost of an overestimate of the power of a test (where
the degree of overestimate depends on the size of ;ﬁg discrepency Be-
tween the conservative o and the true o). This fact, together with the
conditional nature of the power calculations noted above, makes it imper-

ative that we stress that the power calculations:to be presented below

should be taken as absolute minimum Type II error rates.9
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IV Power

Once appropriate statistical tests and Type I error rate have been
selected, to calculate power, the probability of rejecting a false null
hypothesis for any test, we must determine the probability that the test
statistic for the hypothesis exceeds the critical value when a given al-
ternative hypothesis is true. The GIM test statistic u is distributed
as a noncentral F when an alternative hypothesis 1s true, with J and
Nrf K degrees of fregdom and noncentrality parameter 62. The distribu-
- tion has the property that the probability of the statistic u exceeding
: a given critical value (and consequently power) increases monotonically
with 62; The noncentrality parameter is a function of (among other things)
the degrée to which the“nuil ﬁypothesis is false, For the most general

GLM test, the test of a set of J linear combinations of coefficients is

(7) H : AB = AB* and,

o}
the noncentrality parameter, 62 is

o o2 . BT A @D Ao s -
8 = .

YeX

Figure 1 presents a plot of power as a function of 62 for various
combinations of Type I error rates and numerator degrees of freedom,
and arbitrarily large denominator degrees of freedom.10 It can be seen
that for a given 0 and 62, power decreases with numerator degrees of

freedom J, and that for given J, power is monotonically related to the
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profability of a Type I error. All three of these relationships are - f
important when we consider the implications of simultane§us inference ;
for power.

In Table 2 we present alternative expressions for the noncentrality
parameters for the test of an individual coefficient and the joint test
of J (J<K-=- 1) coefficients. The noncentrality parameters are pre=
gsented as functions of the original GLM parameters and standardized
parameters.11 Looking first at the test of the kth individual coefficient
we see immediately that 62 (and therefore power) increases with the de-
gree Bk departs from its hypothesized value Bf*t' Noting that .’i' y_* X iéi

just the sum of équared residuals.for the regression of the kth independent

variable on the remaining K - 2 independent variables, we conclude also .
that power increases with the orthogonality of the kth independeng vari-
able to the others. We see this again in the (1 - szk'x*) term in the
standardized expression, and note also that, of course, power increases
with sample size. From the standardized expressién we alsp,geg that
power increases with the proportion of variance explained (i.e. as
Oi.x/dz decreases). None of these results should be surprising. The
ability to reject a false null hypothesis increases with the degree to
which it is false, the degree to which the effect being tested is non-
redundant with the effects of otﬂer parameters, the amount of data avail-
able, and the overall power of the iinear model.

Thé 5 2 parameter for the joint tedt of J (J < K -1) coefficients

‘can be interpreted as a multivariate extension of the single coefficient .Mﬁﬁ
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case., Both Eé M;X, and R,, ; are measures of the degree to which the
covariation among the J variables with coefficients Being tested 1s
orthogonal to the covariation among the remaining K - J - 1 dndependent
variables, and §2 - g; is the vector discrepangy between the true vélues
of the J coefficients and their hypothesized values. Indeed for all
GIM tests we can conceptualize the noncentrality parameter as a scaler
measure of the degree to which the null hypothesis 1s false, weighted'
by the amount of independent information available,

Given a substantively méaningful alternative hypothesis oné would
wish to be able to detect, the configuration of independent variables
in the model, and the completeness of the model as measured by the pro-
portion of variance explained, it is a trivial matter to program a com-
puter to compute 62 as expressed in equation (8) for any general linear
hypothesis and any specified alternative, Thus given 62 and n, one has
enough information to determine the power of the test from Pearson and
Hartley charts (Scheffé, 1959: 438-445; Kirk, 1968: 520-547), We now

present examples of calculations of power as functions of n and the

degree to which the null hypothesis is false.

A. Determining the Power of GIM Tests: Some Examples

Is 1t indeed the case that survey researchers are typically confronted
with testing situations where they have 'too much'" power, i.e. 1s it
usually true that trivial departures form the null hypothesis result in

statistically significant tests? It is impossible to answer this question

ert et anwy annnvary wdthant Aatne nawar ralenlatdnna . Onr calenlatinna
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presented below show that having too much power is by no means generally
the case. Furthermore, we argue that if a researcher is to report the
results of statistical teste, 1t 1s always imperative that the magnitude
of the effects, trivial or nontrivial, which are likely to be detected
also be presented.

Consider the following linear model:
(9) yy = By +BXyp # BXyg + B X, + BXys + BeXyg ¥ €4 s

where:

y = Income,

e
n

Education,

4
II

Occupation,

o
0

Parental income,

Father's occupation,

<
L
H

Father's income.

el
]

When models of the socloeconomic achievement process such as equation
(9) are estimated, the researcher is usually interested in hypotheses
about all five coefficients (excluding the intercept), Bz, e o o3 86. To
maintain an overall protection of 1 ~ ag = ,95 against Type I error we
can conduct simple t-tests on the five coefficients at tﬁe N1l level
(Bonferroni), or compare the usual 1 degree of freedom Fatests (the
square of the t-test) to the SF;t; -x critical value (Scheffé).

Let us consider the power of the test of the education coefficient,
= (), when the true net return to‘a year of education is $150,

H, : B

1 B2

2

==}

= 150, Given this null hypothesis and a meaningful alternative
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hypothesis, how large of a sample size 1s required to have a reasonable
11kelihood of detecting an education effect of $150 a year in samples
drawn from the United States labor force? We know from the expression
for the noncentrality parameter in T:ble 2 that the power of the test
also depends on the variation in and covariation among the independent
variables, and the proportion of variation explained in the model., Assum-
ing that the five social variables explain about 15 percent of the income
variation in the United States labor force, and using published correla- -
tions and variances of the five variables from a sample of Wisconsin high-
school graduates (Sewell and Hauser, 1972), we can calculate the noncen-
trality parameter as a function of sample size. From Pearson-Hartley
charts we can then plot power as a function of sample size.12

In FPigure 2 we present the plot of power as a function of sample
size for a Type I error rate of .05 for: (1) the Bonferroni test,
(2) the Scheffé projection, and (3) a simple t-test not controlling
for overall Type I error rate (the noncentrality parameter is identical
for all three tests). We see, as noted abbve, that the Bonferroni test
13 slightly more powerful than the Scheffé- projection, and that compared
to the simple t-test one must pay a price in terms of power in order to
control for overall error rate. Thus, if one 1s going to test the net
education effect with a Bonferroni test, a sample size of at least 2200
observations is required to achieve a power of .90.

Does the above result imply that national samples of more than
10,000 observations, tests on coefficients f the income determination

model will have "more than ehbugh power"? This is only true for the
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specific null and alternative hypotheses specified above. Consider a
different hypothesis on the same education coeffic¢ient., Suppose that
from a census of the pobulation we know that the net effect of a year
of education in 1960 was $150. In 1975 we are to collect a sample in
order to detect changes in B2 through 85 and we want to be able to de-
tect a change in 82 of $30 a year in either direction. In this case we
are testing a nonzero null hypothesis, Ho t By = 35 = 150, against a
nondireétional alternative: Hl 5 B2 - 85 = 30, Using the same
information as in the previous example, we have determined power as a
function of sample size for this test and present the plot in Figure 3.
~In order to detect a change of $30 a year with a Boﬁferroni test with a
:pdwer of .90, a sample of about 60,000 observations would be required.l3
The power of joint tests on coefficients is generally greater for a
given sample size. Figures 4 and 5 present the power of Joint tests on
32. 33 and 84 (where we have assumed that no hypotheses concerning 35
and 86 are to be treated). Figure 4 presents the power of the test of
the joint null hypothesis th;t Bz, 83 and 84 are all zero versué the
alternative that they each have standardized effects of ,10, Figure 5
presents the power to detect a joint standardized change of «02 in each
coefficient. Once agaip, the sample size needed to detect the joint
change with a power of .90 is relatively large, nearly 9,000 for o = .01,

We conqlude from the above examples that it is by no means guaranteed
that tests based on large sample surveys-have "more than enough" power.
While it 1is true that as our theories becéme more powerful and our models

become more precise representatives of empirical processes, the increase
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in the proportion of variance we can explain will unilaterally increase
the power of our statistical tests, we will also become interested in
detecting increasingly smaller effects. Indeed, in situationms where we
are interested in detecting change through replications of surveys, it

1s 1likely ‘that we will wish to detect relatively small effects with little
or no increase in the proportion of variance explained in the replication.

Analysts of survey data are most often confronted with a situa;ion
where the data have already been collected. Sample size and the config-
uration of independent variables are given, and the researcher wishes fo
test hypotheses of the parameters of a model on the given data set, 1In
such a situation the relevant power calculation is power as a function
of the degree to which the null hypothesis is false. From eqﬁatidn (8)
and Table 2 we see that the only additional information needed to compute
62 is a value for cf'.x or di.)/ 3. Should the researcher find that one
or more tests are not powerful enough to detect substantivelyvyggpingful
effects, two actions are possible. Thewresearcher can increase 0., low—-
ering the protection against making a Type I error. If this 1s unaccep-
table, the researcher must simply conclude that the data are inadequate
for testing those particular hypotheses.

In Figure 6 we present power as a function of the degree to which
the null hypothesis is false for our exgmple of the Bonferroni test of
the education coefficient in the income model. For fixed sample sizes
from 250 to 10,000 observations, the power of the test of the hypothesis,

H = Bz* is presented as a function of the absolute magnitude of the

0* 8
standardized measure of the degree to which the null hypothesis is false,

IR - R *x|. with a samnle size of 250, we see that the standardized effect
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would need to be as large as .30 to be detected with any regularity
(power of .90), while for a sample of 10,000 observations, an effect
as small as .07 can be detected with near certainty. To detect an
effect of .15, a researcher with a sample of 230 observations would
have to conclude that the data are inadequate, while a researcher with
a sample of 10,000 would be in danger of finding "rrivial" effects
statistically significant and would perhaps decide to increase pro-
tection against Type I error substantially.

A single short Fortran computer program based on equation (8)
has allowed us to compute all of the power calculations presented in

this section. The logistics of these calculations are simplela

could be routinely incorporated into regression or GLM computer packages.

and

If for no other reason than to force investigators to decide what
effects in the population they would find substantively important,

power considerations should be incorporated into our GLM hypothesis
testing procedures. It is our hope that by incorporating power and
simultaneous inference considerations into our hypothesis testing proce-
dures we can narrow the gap between "statistical significance" and

"gubstantive significance."”

V. Conclusion

Classical hypothesis testing as presented in most texts in a two-
step procedure. One chooses a level of Type 1 error, 0, and compares
the test statistic to a critical value based on that a. After review-

ing the neglected issues of simultaneous inference and power, we find
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classical hypothesis testing inadequate for the purposes of social
research, The intelligent use of statistical inference demands
control QY&E;EhguQVQtﬁllNEEYEE%Pf Type I error and knowledge of the
magnitude of effects one is likely to detect, Our examinatdon of

specific techniques for dealing with the power and simultaneous
inference problems have led us to conclude that these techniques
can be routinely inccrporated into our procedures for thg stagistical
analysis of survey data. Therefore, we suggest the following pro-

cedures preacede the testing of GLM hypotheses:

1, Specify the hypotheses to be tested in terms of the param=-
eters of the linear model,

2, Choose an acceptable Type I error rate, aG, for the group
of hypotheses.

3. Select the appfopriaté test statistics, Bonferroni or
Scheffé, which provide protection against Type I error
at the 1 - aG level.

4, Compute the noncentrality parameter, 62, and power of the

tests as a function of the magnitude of the effects to be

detected.,
The above steps will proQide information such that meaningful decisions
can be made about the hypotheses being tested. This information may be
used in survey design for the rational choice of sample size, or for
assessing the adequacy of available data for hypothesis testing,

In recent years the use of statistical inference as a criterié in
scientific decision-making has been the subject of increasing criticism
(Morrison and Henkel, 1970)., Part of this criticism has been directed

at the failure of standard procedures of statistical inference to provide

the kind of information required for meaningful scientific decision-making.

<
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-, procedure we suggest requires that the researcher consider the purpose

36

In spite of this criticism standard procedures of gtatistical inference
continue to be employed. The continued use of the standard procedures
can, at least in part, be attributed to the lack of a viable alternative
when survey samples are analyzed. The use of our alternative procedure
in our estimation, can contribute to a more informed use of statistical
inference in‘scientific decision-making. It does so hy requiring that
the researcher give more attention to the goals of his research in the

use of statistical inference as a scientific decision-making aid. The

of the research in the selection of a meaningful unit of error rate. It
also requires that the researcher give attention to the size of effect
believed to be substantively significant in judging the adequacy of a

given sample for decision-making purposes,
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NOTES

1The choice of sample size in a survey design is always subject to
cost constraints, and it is simply impossible to take into consideration
the impact of sample size on all hypotheses which will be subsequently
tested on the datz. wWith multivariate sampling, it is impossible to
fix a_priori the variation in each independent variable and the covaria-
tion among the independent variables, Thus, even those analysts fortunate
enough to be involved in gurvey design have only 1imited con;rol over

the power of their SubsSequent tests.

zln models in Which an intercept is specified, the first columm of
X is a vector of ones, (1 1., . 1); and the firgt element of the B
vector is the interQept parameter, All models considered in this paper
will have interceptS specified. Thus K -~ 1 rather than K is the number

of independent variables,

3his requirenent 1ig stronger than that of uncorrelatednesé of €
and X; it 1s a wesker asgumption than statistical independence of € and
X.

hThe null disttiputions of GILM test statistics do not depend upon
the configuration of the z,matrix, and consequently the conditional.and
unconditional Type I efror rates are equivalent. The nonnull distribu-
tions of the GIM test statistics do depend upon the X matrix configura-

tion (see the expression for the noncentrality parameter presented below).

41
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By ignoring sampling variahility in the X matrix , a source of vari-
ability in the nonnull distribution of the test statistics is being
ignored. Consequently,.the unconditional probability of Type II error
18 underestimated. Unfortunately, the unconditional nonnull test
statistic distribution theory is quite complex, and incorporating it
into our presentation would take us out of the context of the classical

general linear model.

5The matrix expression for the t-test of hypothesis (3) 1s merely
a'b - a' B* divided by the standard error of the linear combination a'
b, where the standard error is 82 @' (_}g';}g)'l_a_).

6‘Miller (1966) provides an exhaustive treatméqt of the statistical

‘bases and applications of the many techniques of simultaneous statis-
tical inference. A lesg exhaustive and more applications-oriented review

is provided by Kirk (1968).

7The case of "theory trimming" described here is qualitatively
different from the situation of testing an a priori hypothesized model.
A number of procedures have been proposed for testing the fit for an a
priori model where certain structural coefficients are hypothesized to
be equal to zero (Land, 1973; McPherson and Huang, 19743 Specht, 1975).
McPherson and Huéhg (1974) present an equation-by-equation scheme for
testing the fit of an hypothesized recursive structural equation model
that explicitly incorporates simultaneous inference considerations. If
a single test of the global fit of an hypothesized model is performed,
then one is effectively removed from the simultaneous‘infefence case.

If a comparison of the fit of several models is performed (cf. Specht,

42
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1975), or if an attempt ié made to diagnose what specific structural
parameters are responsible for the failure of an hypothesized model to
hold, then considerations raised in our discussion of simultaneous

inference issues again become relevant.

8There are, of course, other techniques that are applicable to the
common hypotheses tests on slope coefficients. For example, Williams
(1972) discusses the application of Tukey's technique for making
pairwise multiple comparisons of means within the regression framework.
We restrict our attention to the Bonferroni and Scheff& techniques be-

cause of their wide generality and ease of applicatilon.

90ther factors such as departures from random sampling and measure-
ment errér affect both Type I and Type II error rates. Again, we have
slighted important issues in order to remain within the context of the
classical general linear model as it is most often applied in research
by sociologists. Our point is not primarily that approximate error rate
calculations are better than none. A more fundamental point is that the

conceptualization of the appropriate unit of error rate and of meaning-

ful effects to be detected will enhance our understanding of what our
statistical analyses of survey data can and cannot tell us.

10Power tables approach an asymtope at about N - K = 100 denomin-

ator degrees of freedom. Since we are concerned with survey samples

with generally many more than 100 observations, our calculations are

based on tabled power for "infinite" denominator degrees of freedom.
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lllt must be assumed here that the hypotheses being tested are

with respect to the unstandardized parameters and that the standard-

ized parameters are merely an arbitrary rescaling of their unstan-
dardized counterparts. The GIM distribution theory does not apply
to the direct estimation of standardized parameters., The distribu-
tions of the standardized estimates and test statistics.can become
quite complex. The application of such distributions to direct
statistical inference with respect to standardized parameters is
virtually nonexistent in the social survey literature.

len intermediate step 1s required to use these charts. They

are presented in terms of a parameter ¢ where ¢ = #E‘) G +1) °
where J is the numerator degrees of freedom of the test, For
Scheffé projections, J is the numerator degrees of freedom from the
preliminary joint test.

13Note also that our value for 82 in 1960 was assumed to be based

on a census and therefore not subject to sampling variability. If this
were not the case, the power curves would be still lower.

1I'While the calculations are simple, the intermediate step of

calculating the ¢ parameter and finding power in the Pearson-Hartley
charts can be annoying. It would be much more convenient if charts
were available for power as a function of 62 directly (as in Figure 1)
for a number of a levels and numerator degrees of freedom, The Pearson-
Hartley. charts are further limited in that they have been tabulated only

for a = ,01, .05 and .10,
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